Less Than
Definition
Asserts that the field is a number less than (or equal to) a value.
Field Scope
Single: The rule evaluates a single specified field.
Accepted Types
Type | |
---|---|
Integral |
|
Fractional |
General Properties
Name | Supported |
---|---|
Filter Allows the targeting of specific data based on conditions |
|
Coverage Customization Allows adjusting the percentage of records that must meet the rule's conditions |
The filter allows you to define a subset of data upon which the rule will operate.
It requires a valid Spark SQL expression that determines the criteria rows in the DataFrame should meet. This means the expression specifies which rows the DataFrame should include based on those criteria. Since it's applied directly to the Spark DataFrame, traditional SQL constructs like WHERE clauses are not supported.
Examples
Direct Conditions
Simply specify the condition you want to be met.
Combining Conditions
Combine multiple conditions using logical operators like AND
and OR
.
Correct usage
Incorrect usage
Utilizing Functions
Leverage Spark SQL functions to refine and enhance your conditions.
Correct usage
Incorrect usage
Using scan-time variables
To refer to the current dataframe being analyzed, use the reserved dynamic variable {{ _qualytics_self }}
.
Correct usage
Incorrect usage
While subqueries can be useful, their application within filters in our context has limitations. For example, directly referencing other containers or the broader target container in such subqueries is not supported. Attempting to do so will result in an error.
Important Note on {{ _qualytics_self }}
The {{ _qualytics_self }}
keyword refers to the dataframe that's currently under examination. In the context of a full scan, this variable represents the entire target container. However, during incremental scans, it only reflects a subset of the target container, capturing just the incremental data. It's crucial to recognize that in such scenarios, using {{ _qualytics_self }}
may not encompass all entries from the target container.
Specific Properties
Allows specifying a numeric value that acts as the threshold.
Name | Description |
---|---|
Value |
The number to use as the base comparison. |
Inclusive |
If true, the comparison will also allow values equal to the threshold. Otherwise, it's exclusive. |
Comparators |
Specifies how variations are handled, allowing for slight deviations within a defined margin of error. |
Details
Comparators
The Comparators allow you to set margins of error, accommodating slight variations in data validation. This flexibility is crucial for maintaining data integrity, especially when working with different data types such as numeric values, durations, and strings. Here's an overview of how each type of comparator can be beneficial for you:
Numeric
Numeric comparators enable you to compare numbers with a specified margin, which can be a fixed absolute value or a percentage. This allows for minor numerical differences that are often acceptable in real-world data.
Comparison Type
- Absolute Value: Uses a fixed threshold for determining equality. It's ideal when you need consistent precision across measurements.
- Percentage Value: Uses a percentage of the original value as the threshold for equality comparisons. It's suitable for floating point numbers where precision varies.
Threshold
The threshold is the value you set to define the margin of error:
- When using Absolute Value, the threshold represents the maximum allowable difference between two values for them to be considered equal.
- For Percentage Value, the threshold is the percentage that describes how much a value can deviate from a reference value and still be considered equal.
Illustration using Absolute Value
In this example, it is being compared Value A
and Value B
according to the defined Threshold of 50.
Value A | Value B | Difference | Are equal? |
---|---|---|---|
100 | 150 | 50 | True |
100 | 90 | 10 | True |
100 | 155 | 55 | False |
100 | 49 | 51 | False |
Illustration using Percentage Value
In this example, it is being compared Value A
and Value B
according to the defined Threshold of 10%.
Percentage Change Formula: [ (Value B
- Value A
) / Value A
] * 100
Value A | Value B | Percentage Change | Are equal? |
---|---|---|---|
120 | 132 | 10% | True |
150 | 135 | 10% | True |
200 | 180 | 10% | True |
160 | 150 | 6.25% | True |
180 | 200 | 11.11% | False |
Anomaly Types
Type | Supported |
---|---|
Record Flag inconsistencies at the row level |
|
Shape Flag inconsistencies in the overall patterns and distributions of a field |
Example
Objective: Ensure that all L_PRICE entries in the LINEITEM table are less than 20.
Sample Data
L_ORDERKEY | L_PRICE |
---|---|
1 | 18 |
2 | 25 |
3 | 23 |
{
"description": "Ensure that all L_PRICE entries in the LINEITEM table are less than 20",
"coverage": 1,
"properties": {
"inclusive": true,
"value": 20
},
"tags": [],
"fields": ["L_QUANTITY"],
"additional_metadata": {"key 1": "value 1", "key 2": "value 2"},
"rule": "lessThan",
"container_id": {container_id},
"template_id": {template_id},
"filter": "1=1"
}
Anomaly Explanation
In the sample data above, the entries with L_ORDERKEY
2 and 3 do not satisfy the rule because their L_PRICE
values are not less than 20.
Potential Violation Messages
Record Anomaly
The L_PRICE
value of 23
is not less than the value of 20.
Shape Anomaly
In L_PRICE
, 66.667% of 3 filtered records (2) are not less than 20.