Equal To
Definition
Asserts that all of the selected fields' equal a value.
Field Scope
Multi: The rule evaluates multiple specified fields.
Accepted Types
Type | |
---|---|
Integral |
|
Fractional |
General Properties
Name | Supported |
---|---|
Filter Allows the targeting of specific data based on conditions |
|
Coverage Customization Allows adjusting the percentage of records that must meet the rule's conditions |
The filter allows you to define a subset of data upon which the rule will operate.
It requires a valid Spark SQL expression that determines the criteria rows in the DataFrame should meet. This means the expression specifies which rows the DataFrame should include based on those criteria. Since it's applied directly to the Spark DataFrame, traditional SQL constructs like WHERE clauses are not supported.
Examples
Direct Conditions
Simply specify the condition you want to be met.
Combining Conditions
Combine multiple conditions using logical operators like AND
and OR
.
Correct usage
Incorrect usage
Utilizing Functions
Leverage Spark SQL functions to refine and enhance your conditions.
Correct usage
Incorrect usage
Using scan-time variables
To refer to the current dataframe being analyzed, use the reserved dynamic variable {{ _qualytics_self }}
.
Correct usage
Incorrect usage
While subqueries can be useful, their application within filters in our context has limitations. For example, directly referencing other containers or the broader target container in such subqueries is not supported. Attempting to do so will result in an error.
Important Note on {{ _qualytics_self }}
The {{ _qualytics_self }}
keyword refers to the dataframe that's currently under examination. In the context of a full scan, this variable represents the entire target container. However, during incremental scans, it only reflects a subset of the target container, capturing just the incremental data. It's crucial to recognize that in such scenarios, using {{ _qualytics_self }}
may not encompass all entries from the target container.
Specific Properties
Specify the field to compare for equality with the selected field.
Name | Description |
---|---|
Value |
Specifies the value a field should be equal to. |
Comparators |
Specifies how variations are handled, allowing for slight deviations within a defined margin of error. |
Details
Comparators
The Comparators allow you to set margins of error, accommodating slight variations in data validation. This flexibility is crucial for maintaining data integrity, especially when working with different data types such as numeric values, durations, and strings. Here's an overview of how each type of comparator can be beneficial for you:
Numeric
Numeric comparators enable you to compare numbers with a specified margin, which can be a fixed absolute value or a percentage. This allows for minor numerical differences that are often acceptable in real-world data.
Comparison Type
- Absolute Value: Uses a fixed threshold for determining equality. It's ideal when you need consistent precision across measurements.
- Percentage Value: Uses a percentage of the original value as the threshold for equality comparisons. It's suitable for floating point numbers where precision varies.
Threshold
The threshold is the value you set to define the margin of error:
- When using Absolute Value, the threshold represents the maximum allowable difference between two values for them to be considered equal.
- For Percentage Value, the threshold is the percentage that describes how much a value can deviate from a reference value and still be considered equal.
Illustration using Absolute Value
In this example, it is being compared Value A
and Value B
according to the defined Threshold of 50.
Value A | Value B | Difference | Are equal? |
---|---|---|---|
100 | 150 | 50 | True |
100 | 90 | 10 | True |
100 | 155 | 55 | False |
100 | 49 | 51 | False |
Illustration using Percentage Value
In this example, it is being compared Value A
and Value B
according to the defined Threshold of 10%.
Percentage Change Formula: [ (Value B
- Value A
) / Value A
] * 100
Value A | Value B | Percentage Change | Are equal? |
---|---|---|---|
120 | 132 | 10% | True |
150 | 135 | 10% | True |
200 | 180 | 10% | True |
160 | 150 | 6.25% | True |
180 | 200 | 11.11% | False |
Anomaly Types
Type | Supported |
---|---|
Record Flag inconsistencies at the row level |
|
Shape Flag inconsistencies in the overall patterns and distributions of a field |
Example
Objective: Ensure that the quantity of items (L_QUANTITY) in the LINEITEM table is equal to a value of 10.
Sample Data
L_ORDERKEY | L_LINENUMBER | L_QUANTITY |
---|---|---|
1 | 1 | 10 |
2 | 2 | 5 |
3 | 3 | 10 |
4 | 4 | 8 |
{
"description": "Ensure that the quantity of items (L_QUANTITY) in the LINEITEM table is equal to a value of 10",
"coverage": 1,
"properties": {
"value":"10",
"inclusive":true
},
"tags": [],
"fields": ["L_QUANTITY"],
"additional_metadata": {"key 1": "value 1", "key 2": "value 2"},
"rule": "equalTo",
"container_id": {container_id},
"template_id": {template_id},
"filter": "1=1"
}
Anomaly Explanation
In the sample data above, the entries with L_ORDERKEY
2 and 4 do not satisfy the rule because their L_QUANTITY
values are below the specified minimum value of 10.
graph TD
A[Start] --> B[Retrieve L_QUANTITY]
B --> C{Is L_QUANTITY = 10?}
C -->|Yes| D[Move to Next Record/End]
C -->|No| E[Mark as Anomalous]
E --> D
Potential Violation Messages
Record Anomaly
Not all of the fields equal are equal to the value of 10
Shape Anomaly
In L_QUANTITY
, 2 of 4 filtered records (4) are not equal to the value of 10